The Generalized Burnside Theorem in Noncommutative Deformation Theory

نویسنده

  • EIVIND ERIKSEN
چکیده

Let A be an associative algebra over a field k, and let M be a finite family of right A-modules. Study of the noncommutative deformation functor DefM : ar → Sets of the family M leads to the construction of the algebra O(M) of observables and the Generalized Burnside Theorem, due to Laudal [2]. In this paper, we give an overview of aspects of noncommutative deformations closely connected to the Generalized Burnside Theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized κ-Deformations and Deformed Relativistic Scalar Fields on Noncommutative Minkowski Space

We describe the generalized κ-deformations ofD = 4 relativistic symmetries with finite masslike deformation parameter κ and an arbitrary direction in κ-deformed Minkowski space being noncommutative. The corresponding bicovariant differential calculi on κdeformed Minkowski spaces are considered. Two distinguished cases are discussed: 5D noncommutative differential calculus (κ-deformation in time...

متن کامل

Computing Noncommutative Deformations of Presheaves and Sheaves of Modules

We describe a noncommutative deformation theory for presheaves and sheaves of modules that generalizes the commutative deformation theory of these global algebraic structures, and the noncommutative deformation theory of modules over algebras due to Laudal. In the first part of the paper, we describe a noncommutative deformation functor for presheaves of modules on a small category, and an obst...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

A-branes and Noncommutative Geometry

We argue that for a certain class of symplectic manifolds the category of A-branes (which includes the Fukaya category as a full subcategory) is equivalent to a noncommutative deformation of the category of B-branes (which is equivalent to the derived category of coherent sheaves) on the same manifold. This equivalence is different from Mirror Symmetry and arises from the Seiberg-Witten transfo...

متن کامل

Twist and Spin-Statistics Relation in Noncommutative Quantum Field Theory

The twist-deformation of the Poincaré algebra as symmetry of the field theories on noncommutative space-time with Heisenberg-like commutation relation is discussed in connection to the relation between a sound approach to the twist and the quantization in noncommutative field theory. The recent claims of violation of Pauli’s spin-statistics relation and the absence of UV/IR mixing in such theor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009